Exercises

Sequences and Limits - Solutions

Exercise 1.

1.

$$
\begin{aligned}
a_{n}=\frac{4 n^{2}+3 n-27}{8 n^{2}-24 n+108} & =\frac{n^{2}\left(4+3 \frac{1}{n}+27 \frac{1}{n^{2}}\right)}{n^{2}\left(8-24 \frac{1}{n}+108 \frac{1}{n^{2}}\right)} \\
& =\frac{4+3 \overbrace{\frac{1}{\frac{n}{n}}}^{8-24 \underbrace{\frac{1}{n}}_{\substack{n \rightarrow \infty}}+27}+108 \overbrace{\substack{\frac{1}{n^{2}}}}^{\underbrace{\frac{1}{n^{2}}}_{\substack{n \rightarrow \infty}}} \xrightarrow{n \rightarrow \infty} \frac{4}{8}}{}=\frac{1}{2}
\end{aligned}
$$

2.

$$
\begin{aligned}
b_{n}=\frac{5 n^{3}-6 n}{8 n^{4}-3} & =\frac{n^{4}\left(5 \frac{1}{n}-6 \frac{1}{n^{3}}\right)}{n^{4}\left(8-3 \frac{1}{n^{4}}\right)} \\
& =\frac{5 \frac{1}{n}-6 \frac{1}{n^{3}}}{8-3 \frac{1}{n^{4}}} \xrightarrow{n \rightarrow \infty} \frac{0}{8}=0
\end{aligned}
$$

3.

$$
\begin{aligned}
c_{n}=\frac{n^{2}-n+5}{n+8} & =\frac{n^{2}\left(1-\frac{1}{n}+\frac{5}{n}\right)}{n^{2}\left(\frac{1}{n}+\frac{8}{n}\right)} \\
& =\frac{1-\frac{1}{n}+\frac{5}{n}}{\frac{1}{n}+\frac{8}{n}} \xrightarrow{n \rightarrow \infty} \infty
\end{aligned}
$$

since the numerator converges to 1 and the denominator converges to 0 .
4.

$$
\begin{aligned}
d_{n} & =\sqrt{n^{2}+n+1}-\sqrt{n^{2}+1} \\
& =\frac{\left(\sqrt{n^{2}+n+1}-\sqrt{n^{2}+1}\right) \cdot\left(\sqrt{n^{2}+n+1}+\sqrt{n^{2}+1}\right)}{\sqrt{n^{2}+n+1}+\sqrt{n^{2}+1}} \\
& =\frac{\left(\sqrt{n^{2}+n+1}\right)^{2}-\left(\sqrt{n^{2}+1}\right)^{2}}{\sqrt{n^{2}+n+1}+\sqrt{n^{2}+1}} \\
& =\frac{n}{\sqrt{n^{2}+n+1}+\sqrt{n^{2}+1}} \\
& =\frac{n}{\sqrt{n^{2}\left(1+\frac{1}{n}+\frac{1}{n^{2}}\right)}+\sqrt{n^{2}\left(1+\frac{1}{n^{2}}\right)}} \\
& =\frac{n}{\sqrt{n^{2}}\left(\sqrt{1+\frac{1}{n}+\frac{1}{n^{2}}}+\sqrt{1+\frac{1}{n^{2}}}\right)} \\
& =\frac{1}{\sqrt{1+\frac{1}{n}+\frac{1}{n^{2}}}+\sqrt{1+\frac{1}{n^{2}}}} \xrightarrow{n \rightarrow \infty} \frac{1}{\sqrt{1+0+0}+\sqrt{1+0}}=\frac{1}{2}
\end{aligned}
$$

Exercise 2.

1. The sequences $a_{n}=n$ and $b_{n}=-n$ are divergent (to ∞ and $-\infty$) but $a_{n}+b_{n}=0$ and thus converges to 0 .
2. The sequences $a_{n}=2 n \xrightarrow{n \rightarrow \infty}+\infty$ and $b_{n}=-n \xrightarrow{n \rightarrow \infty}-\infty$ fulfil

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} n=\infty
$$

3. The sequence $a_{n}=-\frac{1}{n}$ is strictly increasing and converges to 0 .
4. $a_{n}=\frac{1}{n} \xrightarrow{n \rightarrow \infty} 0$ but with $b_{n}=n^{2}$ we have $\lim _{n \rightarrow \infty} a_{n} b_{n}=\infty$.
5. The sequence $a_{n}=(-1)^{n}$ is bounded (by -1 and 1) but a_{n} is not convergent.

Exercise 3.

1. Define the geometric sequence $a_{n}:=C_{0} \cdot(1+p)^{n}$.
2. We want to find C_{0} such that $a_{10}=10000$. In general we have

$$
a_{n}=C_{0} \cdot(1+p)^{n} \Leftrightarrow C_{0}=\frac{a_{n}}{(1+p)^{n}}
$$

so in this case we compute

$$
C_{0}=\frac{10000}{1.05^{10}} \approx 6139.13 \approx 6140
$$

3. The capital after 20 years is

$$
a_{20}=10000 \cdot(1.04)^{20} \approx 26532.97
$$

4. (a) With the formula from (c) we get that it takes $n \approx 23.44$, i.e. about 24 years to double the capital.
(b) With the formula from (c) we get that it takes $n \approx 11.89$, i.e. about 12 years to double the capital.
(c) For a general $p \in[0,1]$ we have

$$
2=(1+p)^{n} \Leftrightarrow \ln (2)=n \cdot \ln (1+p) \Leftrightarrow n=\frac{\ln 2}{\ln (1+p)}
$$

Exercise 4.

1. The Fibonacci numbers are

n	0	1	2	3	4	5	6	7	8	9	10
a_{n}	1	1	2	3	5	8	13	21	34	55	89

2. (a) For $\mathfrak{n}=0$ we clearly have $\mathrm{a}_{0}=0 \leq 1$.

Suppose that $a_{n} \leq 1$ for some $n \in \mathbb{N}$. Then

$$
a_{n+1}=\frac{1}{2}(\underbrace{a_{n}}_{\leq 1}+1) \leq \frac{1}{2}(1+1)=1 .
$$

Thus $a_{n} \leq 1$ for all $n \in \mathbb{N}$ by induction.
(b) Using (a) we have

$$
a_{n+1}=\frac{1}{2}(\underbrace{a_{n}}_{\leq 1}+\underbrace{1}_{\geq 1}) \geq \frac{1}{2}\left(a_{n}+a_{n}\right)=a_{n}
$$

and thus a_{n} is increasing.
(c) With (a) and (b) we have that a_{n} is convergent (since a_{n} can not diverge to $\pm \infty$ since it is bounded nor alternate (as (-1$)^{\mathrm{n}}$ for example) since it is increasing ${ }^{1}$). So we can use the rules for the computation of limits and obtain

$$
a=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}\left(a_{n}+1\right)\right)=\frac{1}{2}\left(\lim _{n \rightarrow \infty} a_{n}+1\right)=\frac{1}{2}(a+1)
$$

Thus the limit a satisfies the equation $a=\frac{1}{2}(a+1)$ and we get $a=1$.

[^0]
[^0]: ${ }^{1}$ This can be proven formally, see e.g.
 https://en.wikipedia.org/wiki/Monotone_convergence_theorem.

