
Exercises
Sequences and Limits – Solutions
Exercise 1.
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Exercise 2.

1. The sequences an = n and bn = −n are divergent (to ∞ and −∞) but
an + bn = 0 and thus converges to 0.

2. The sequences an = 2n
n→∞−→ +∞ and bn = −n

n→∞−→ −∞ ful�l

lim
n→∞(an + bn) = lim

n→∞n = ∞.

3. The sequence an = − 1
n

is strictly increasing and converges to 0.

4. an = 1
n

n→∞−→ 0 but with bn = n2 we have lim
n→∞anbn = ∞.

5. The sequence an = (−1)n is bounded (by −1 and 1) but an is not conver-
gent.

Exercise 3.

1. De�ne the geometric sequence an := C0 · (1+ p)n.

2. We want to �nd C0 such that a10 = 10000. In general we have

an = C0 · (1+ p)n ⇔ C0 =
an

(1+ p)n
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so in this case we compute

C0 =
10000

1.0510
≈ 6139.13 ≈ 6140.

3. The capital after 20 years is

a20 = 10000 · (1.04)20 ≈ 26532.97

4. (a) With the formula from (c) we get that it takes n ≈ 23.44, i.e. about
24 years to double the capital.

(b) With the formula from (c) we get that it takes n ≈ 11.89, i.e. about
12 years to double the capital.

(c) For a general p ∈ [0, 1] we have

2 = (1+ p)n ⇔ ln(2) = n · ln(1+ p) ⇔ n =
ln 2

ln(1+ p)

Exercise 4.

1. The Fibonacci numbers are

n 0 1 2 3 4 5 6 7 8 9 10

an 1 1 2 3 5 8 13 21 34 55 89

2. (a) For n = 0 we clearly have a0 = 0 ≤ 1.
Suppose that an ≤ 1 for some n ∈ N. Then
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1

2
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+1) ≤ 1

2
(1+ 1) = 1.

Thus an ≤ 1 for all n ∈ N by induction.
(b) Using (a) we have
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and thus an is increasing.
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(c) With (a) and (b) we have that an is convergent (since an can not di-
verge to±∞ since it is bounded nor alternate (as (−1)n for example)
since it is increasing1). So we can use the rules for the computation
of limits and obtain

a = lim
n→∞an+1 = lim

n→∞
(
1

2
(an + 1)

)
=

1

2

(
lim
n→∞an + 1

)
=

1

2
(a+1)

Thus the limit a satis�es the equation a = 1
2
(a+1) and we get a = 1.

1This can be proven formally, see e.g.
https://en.wikipedia.org/wiki/Monotone_convergence_theorem.
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